I’m Dorian Joubaud, a Data Scientist Engineer and PhD student in Machine Learning at the University of Luxembourg’s SnT. I’m passionate by AI applications. My current work challenges data augmentation for time-series analysis particulary in Industry 4.0. I am always intested in discovering and discussing new ideas, so feel free to reach out to me.
Dorian Joubaud
dorian.joubaud@uni.lu
CycleGAN-based data augmentation pipeline for Remaining Useful Life (RUL) prediction under unsupervised domain adaptation, improving generalization across domains using adversarial learning and correlation alignment.
BALANCER is a machine learning framework that recommends the best data augmentation techniques for imbalanced time series classification tasks, validated over 720 datasets and explained with XAI tools.
PhD student in Machine Learning at the University of Luxembourg’s SnT, focusing on data augmentation for time-series analysis in Industry 4.0.
Master's degree from Institut Polytechnique de Paris at the University Paris-Saclay, in partnership with Telecom SudParis, ENSIIE, and the University of Versailles, in agreement with CNAM. Information Processing and Data Exploitation, leading to the profession of Data Scientist as well as the field of Big Data, and which can lead to research.
Engineering student at ENSIIE, specializing in Data Science and Artificial Intelligence, with a focus on machine learning and data analysis.
Odio soluta enim quos sit asperiores rerum rerum repudiandae cum. Vel voluptatem alias qui assumenda iure et expedita voluptatem. Ratione officiis quae.
Proin gravida nibh vel velit auctor aliquet. Aenean sollicitudin, lorem quis bibendum auctor, nisi elit consequat ipsum, nec sagittis sem nibh id elit.
Exercitationem reprehenderit quod explicabo consequatur aliquid ut magni ut. Deleniti quo corrupti illum velit eveniet ratione necessitatibus ipsam mollitia.
Dolores velit qui quos nobis. Aliquam delectus voluptas quos possimus non voluptatem voluptas voluptas. Est doloribus eligendi porro doloribus voluptatum.
Proin gravida nibh vel velit auctor aliquet. Aenean sollicitudin, lorem quis bibendum auctor, nisi elit consequat ipsum, nec sagittis sem nibh id elit.
Quisquam vel libero consequuntur autem voluptas. Qui aut vero. Omnis fugit mollitia cupiditate voluptas. Aenean sollicitudin, lorem quis bibendum auctor.
Odio soluta enim quos sit asperiores rerum rerum repudiandae cum. Vel voluptatem alias qui assumenda iure et expedita voluptatem. Ratione officiis quae.
Proin gravida nibh vel velit auctor aliquet. Aenean sollicitudin, lorem quis bibendum auctor, nisi elit consequat ipsum, nec sagittis sem nibh id elit.